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 PIn the phenomenon of repetition suppression (RS), when a person views a stimulus, the neural activity

involved in processing that item is relatively diminished if that stimulus had been previously viewed. Previous
noninvasive imaging studies mapped the prevalence of RS for different stimulus types to identify brain regions
involved in representing a range of cognitive information. However, these noninvasive findings are challenging
to interpret because they do not provide information on how RS relates to the brain's electrophysio-
logical activity. We examined the electrophysiological basis of RS directly using brain recordings from
implanted electrocorticographic (ECoG) electrodes in neurosurgical patients. Patients performed amemory task
during ECoG recording and we identified high-gamma signals (65–128 Hz) that distinguished the neuronal
representation of specific memory items. We then compared the neural representation of each item between
novel and repeated viewings. This revealed the presence of RS, in which the neuronal representation of a repeated
item had a significantly decreased amplitude and duration compared with novel stimuli. Furthermore, the
magnitude of RS was greatest for the stimuli that initially elicited the largest activation at each site. These
results have implications for understanding the neural basis of RS and human memory by showing that
individual cortical sites exhibit the largest RS for the stimuli that they most actively represent.

© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

The phenomenon of repetition suppression (RS) is a powerful tech-
nique for mapping the functional roles of neurons across different brain
areas. In RS, the brain areas that activate when a person views an item
generally show a diminished response when a person later sees an
identical or similar stimulus. By identifying the areas that exhibit RS
across different types of stimuli, researchers have obtained rich insights
into the neural basis of various human neuronal processes, including
perception, memory, and reasoning (Grill-Spector et al., 2006). Re-
search has used RS to reveal detailed information regarding the types
of neuronal processes that occur in different brain areas, such as the
findings that perceptual memory information is represented in sensory
regions (Tootell et al., 1998) and that abstract stimulus properties are
coded by neurons in temporal and frontal cortices (Henson et al.,
2004). Further, the magnitude of RS predicts the strength of a person's
memory on a trial-by-trial basis (Maccotta and Buckner, 2004) and
shows the involvement of different brain regions in distinct memory
processes (Gonsalves et al., 2005). Although RS is not a perfect measure
of neuronal coding (Sawamura et al., 2006), obtaining a more detailed
understanding of RS is likely to shed light on the fundamental nature
of human memory and cognition and is considered a key goal of cogni-
tive neuroscience (Weiner and Grill-Spector, 2012).

The phenomenon of RS has been studied with various methods,
including scalp electroencephalography (Conrad et al., 2007; Gruber
and Matthias, 2005; Gruber et al., 2006; McDonald et al., 2010;
Sambeth et al., 2004; Van Strien et al., 2007), magnetoencephalography
(Dale et al., 2000; Friese et al., 2012; Gonsalves et al., 2005;McDonald et
al., 2010; Noguchi et al., 2004; Vidyasagar et al., 2010), electrocorticog-
raphy (Hermes et al., 2012; McDonald et al., 2010; Puce et al., 1999),
and single-cell recordings (De Baene and Vogels, 2010; Kaliukhovich
and Vogels, 2011; Sawamura et al., 2006; Sobotka and Ringo, 1996).
Nevertheless, the vast majority of research on RS in humans uses fMRI
(Harris and Aguirre, 2010; Henson et al., 2000b; Henson et al., 2004;
James and Gauthier, 2006; Larsson and Smith, 2012; Maccotta and
Buckner, 2004; Malach, 2012; Sayres and Grill-Spector, 2006). Various
neural models have been proposed to explain how the RS observed
with fMRI is related to the brain's electrical activity (Grill-Spector et
al., 2006). These models differ in terms of how they attribute RS to
changes in the amplitude, timing, and identities of the neurons that
are active when viewing a repeated item. Distinguishing between
these theories is further complicated by uncertainty regarding the
relation between the fMRI blood-oxygenation signal and underlying
neuronal activity (Ekstrom, 2010; Logothetis et al., 2001). Thus,
researchers suggested that direct electrophysiological recordings
could help to explain RS more fully (Gotts et al., 2012).

We studied RS using direct electrocorticographic (ECoG) brain re-
cordings from neurosurgical patients performing a working-memory
task. The high-frequency component of these ECoG signals correlates
with neuronal spiking (Manning et al., 2009; Miller et al., 2009).
These high-frequency signals have revealed neural assemblies that dis-
tinguish particular stimuli during cognitive tasks (Blakely et al., 2008;
Jacobs and Kahana, 2009; Pasley et al., 2012; Pei et al., 2011). We thus
used ECoG to examine RS in detail in humans by comparing the neural
representations of individual stimuli between the viewing of novel and
repeated items. With this stimulus-based approach, our findings
demonstrate that RS is specific to the high-gamma band (65–128z)
of ECoG signals and, further, that the neuronal assemblies with the
largest initial activations are the ones that exhibit the most RS.

2. Methods

2.1. Patients

We analyzed data from 25 patients who were undergoing invasive
seizure monitoring for drug-resistant epilepsy (Jacobs and Kahana,
Please cite this article as: Merzagora, A.R., et al., Repeated stimuli elicit d
(2013), http://dx.doi.org/10.1016/j.neuroimage.2013.07.006
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2010). Throughout ECoG monitoring, patients volunteered to partici-
pate in our memory task in free time between clinical procedures on a
bedside laptop computer. Each patient participated in between one
and five testing sessions. The research protocol was approved by Insti-
tutional Review Boards at the Hospital at the University of Pennsylvania
(Philadelphia, PA) and the Thomas Jefferson University Hospital
(Philadelphia, PA). Informed consent was obtained from each patient
or their legal guardians.

2.2. Task

Patients performed the Sternberg working-memory task (Sternberg,
1966); each session lasted about 45 min and contained multiple
trials. This is a new dataset that is distinct from the one reported by
Jacobs and Kahana (2009). Each trial consisted of three phases: encoding,
maintenance and response (Fig. 1A). In the encoding phase, patientswere
first presented a fixation cross and then a list of three uppercase letters
were displayed sequentially on a computer screen. Each single letter
stimulus remained on the screen for 700 ms and was followed by a
blank screen for 275–350 ms (uniformly distributed). Each character
had a visual field size of ~10°, although this varied according to where
the subject positioned the laptop on their hospital tray. Patients were
instructed to closely attend to each stimulus presentation and to silently
hold the identity of each item in memory. After all three list items were
presented, the patient attempted to remember all the presented items
during a maintenance period. Last, in the response phase, a cue item
appeared on the screen, and patients pressed a key to indicate whether
the cue item was present or absent in the just-seen list (a target or lure,
respectively). Exactly half of the cue items were targets and half were
lures, with the order randomized. After the response, a feedbackmessage
appeared on the screen, indicating whether the response was correct.
Individual patients participated in different numbers of task sessions
according to their time and interest.

On average, each patient performed 335 trials across all sessions
(~167 repeats), for a total of 1005 letter presentations. The letters
used in this task were one of 8 consonants; vowels were excluded
to prevent patients from using mnemonic strategies to remember
each list (e.g., remembering the entire list as an easily pronounceable
word-like sound). Half the trials had three different list items and half
the trials had a repeat. In lists with repeats, the position of the non-repeat
item was uniformly distributed across the three list positions.

2.3. Data analysis

We analyzed brain signals related to viewing each stimulus by
measuring the amplitude of ECoG activity in the 800 s after each
item onset. These measurements included all oscillatory activity
after item onset, ignoring the signal's phase, in contrast to some pre-
vious studies that measured RSwith ERP techniques (Anderson et al.,
2008; Gilbert et al., 2010) that measure only the portion of the signal
that is phase- and time-locked to each stimulus appearance (Fell et
al., 2004; Hanslmayr et al., 2007; Jacobs et al., 2006; Yeung et al.,
2004). For each electrode, we filtered ECoG activity in five frequency
bands: theta (4–8z), alpha (8–16 Hz), beta (16–30 Hz), low gamma
(30–65z) and high gamma (65–128z). We then computed the ECoG
amplitude in each band with the Hilbert transform (Bruns, 2004;
Freeman, 2007) and smoothed it with a 50-ms boxcar filter. We calcu-
lated the mean amplitude for each band in each of 8 consecutive
100-ms time intervals after each letter appearance (Fig. 1B).

Our next goal was to identify electrodes that recorded ECoG activ-
ity related to processing the identity of each viewed letter (Jacobs and
Kahana, 2009). To do this, we used a one-way ANOVA to test whether
the amplitude of ECoG activity at each electrode, time bin, and fre-
quency band significantly varied (p b 0.01) between presentations
of each individual letter (Fig. 1C). For each electrode measuring
letter-related ECoG activity, we then separately ranked the individual
iminished high-gamma electrocorticographic responses, NeuroImage
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Fig. 1. (A): Schematic representation of Sternberg task with repetitions. Each trial consisted of an encoding period, during which a list of three letters was presented, and a main-
tenance period, followed by a cue. The participant's task was to identify whether the cue appeared in the just-presented list. (B): The amplitude of neuronal activity at one electrode
following letter onset. The amplitude of activity at each timepoint and frequency is normalized related to letter onset (sample electrode from patient 15's left Brodmann area
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letters according to the mean response magnitude at 100–400 s
(Fig. 1D), with rank 1 corresponding to the largest response at that
electrode and rank 8 corresponding to the smallest. We also identified
the electrodes that activated generally during memory encoding
without exhibiting letter-related activity, by comparing the amplitude
of ECoG activity after stimulus onset with the activity in the 200-ms
prestimulus baseline (t test, p b 0.05).

Next we were interested in identifying ECoG activity related to
stimulus repetition. We labeled each stimulus presentation according
to whether that item was a repeat or new item within that list. To test
for effects of repetition, we employed a four-way ANOVA at each
frequency band. The ANOVA factors were the following: Repeated
item (whether the stimulus was a novel or repeat presentation)
Rank (the rank of the viewed letter), List position (the serial position
of the item in the presented list), and Electrode (individual ECoG elec-
trodes). List position and Electrodewere random factors and otherswere
fixed. In our analysis of RS that ignored stimulus-related activity, we
Please cite this article as: Merzagora, A.R., et al., Repeated stimuli elicit d
(2013), http://dx.doi.org/10.1016/j.neuroimage.2013.07.006
used a three-way ANOVA that omitted the factor Rank. In addition to
the ANOVA, we conducted post-hoc tests to identify individual
electrodes exhibiting RS by using paired t tests to compare the
mean responses across the first two ranks between novel and repeated
presentations (α = 0.05). Repeats appear only in the second or third
list positions, unlike novel items,which can also appear in the beginning
of each list. Thus, a potential issue is that a neural signal that varies with
list position (e.g. Azizian and Polich, 2007; Sederberg et al., 2006;
Serruya et al., in press) could incorrectly appear as a correlate of
repetition. We corrected for this potential issue in our statistics
with the factor List position and in our plots by normalizing each
ECoG response relative to themean response from that same list position
for non-repeat items. However, there was no significant effect of List
position in the high gamma band (p = 0.9), which suggests that any
relevant position effects were minimal in this dataset.

To assess the timecourse of RS, we computed the amplitude
timecourse of each electrode's responses to repeat and novel items
iminished high-gamma electrocorticographic responses, NeuroImage
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and measured several temporal features of its shape (Fig. 3A). The
measurements are Onset time, which is the latency from stimulus
onset until the response reaches 75% of its peak increase; Peak time,
the latency (in ms) from stimulus onset until the peak ECoG re-
sponse; and Duration, the length of time from response onset until
its subsequent drop 75% of the way back from its peak to its baseline.
All response shape measurements were computed separately for
novel and repeat items.

We also examined repetition-related changes in event-related
potentials (ERPs) by computing the time-locked ECoG voltage signal
at each electrode and using t tests to compare this signal between repeats
and novel items. ECoG signals were low-pass filtered below 30z and then
ERPs were computed at the sites that actively exhibited elevated high-
gamma activity during the task.

3. Results

We recorded activity from a total of 2262 electrodes implanted in
25 epilepsy patients who performed a working-memory task in free
time between clinical procedures. In each trial of the task, the patient
memorized a list of three letters, each of which either contained three
different items or had one item repeated. Our data analyses sought to
characterize neural patterns that differentiated between the process-
ing of novel and repeat items.

3.1. Behavioral data

First, we assessed patients' task performance by measuring their
reaction times responding to thememory probes after each list. Overall,
patients responded more rapidly to lists containing a repeated item
(1393 s) compared to those that contained three different items
(1589 s; p b 0.05, t test).

3.2. Stimulus-based analysis of repetition suppression

Earlier work showed that a prominent feature of human ECoG
recordings was the presence of neuronal patterns that distinguished
individual items that were encoded into memory (Jacobs and Kahana,
2009). Here utilized these ECoG measurements of individual stimulus
representations to characterize the neuronal basis of repetition
suppression (RS). Our strategy was to first identify the ECoG repre-
sentations of particular stimuli and then to measure changes in these
signals when stimuli were repeated.

To identify the ECoG signals that encoded stimulus-related informa-
tion, at each electrode we performed a one-way ANOVA comparing
neuronal responses after the patient viewed different letters in the
task's encoding phase. As seen previously, many individual electrodes
exhibited increased high-gamma amplitude after each letter appeared
on the screen (Fig. 1B; Crone et al., 1998). For each electrode, we used
a separate series of ANOVAs to test whether the amplitude of this activ-
ity significantly varied according to the identity of the letter that the
person viewed (Jacobs and Kahana, 2009). Fig. 1C illustrates the results
of the ANOVA at an example electrode that exhibited significant
letter-related activity in the high-gamma band at 100–400 s. This site
exhibited the largest amplitude of high-gamma activity when the person
viewed the letter “D”, and had a smaller response for other letters, like “J”
(Fig. 1D).

Across the entire dataset, significant letter-related ECoG activity
(ANOVA p's b 0.01) was most prevalent in the high-gamma band
100–400 s after stimulus onset (Fig. 1E), where 50 electrodes exhibited
activity that differed significantly between individual letters, consistent
with previous work (Jacobs and Kahana, 2009). Our next analyses fo-
cused on high-gamma activity in this frequency band and time interval
(see below for analyses of other frequencies). For each electrode that
exhibited significant stimulus-related high-gamma activity, we sepa-
rately ranked each individual letter according to the magnitude of its
Please cite this article as: Merzagora, A.R., et al., Repeated stimuli elicit d
(2013), http://dx.doi.org/10.1016/j.neuroimage.2013.07.006
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response. For example, at the electrode in Fig. 1D the letter “D” was
ranked first because it elicited the strongest high-gamma amplitude
(11.9 μV) and letter “J” was ranked last (6.6 μV).

Next, we testedwhether the high-gamma representations of individ-
ual items changed with repetition, by aggregating across all electrodes
that exhibited significant letter-related activity (see Section 2). For this
purpose, themost critical features of the ANOVAwere the factors Repeti-
tion and Rank, and their interaction. We did not observe a significant
main effect of Repetition (p N 0.7). However, we did observe a significant
Repetition × Rank interaction (p b 0.001). This significant interaction
showed that high-gamma ECoG activity exhibited RS, but that the mag-
nitude of this effect varied according to the letter's rank. To illustrate this
pattern, Fig. 2A shows the mean difference in high-gamma amplitude
between novel and repeated items, computed seperately for each letter
rank. RS is strongest and statistically robust for stimuli with ranks 1
and 2, and this phenomenon diminished for letters with lower ranks.

This phenomenonof RS in high-gammaECoG activitywas also clearly
visible at individual electrodes (Figs. 2C–H). Of the 50 electrodes that
exhibited significant high-gamma stimulus-related activity, 17 exhibited
significant RS and only 1 exhibited response enhancement (see Table 1).

3.3. Timing analysis

ECoG recordings measure aggregate neuronal activity with a high
temporal resolution (K. Miller et al., 2012). This allowed us to measure
the detailed timecourse of human RS. For each electrode, we computed
the detailed timecourse of the mean high-gamma response amplitude
to first and repeated stimuli. We then measured the shape of each
electrode's response by measuring each response's Onset time, Peak
Time, and Duration (see Fig. 3).

We compared these measurements between first and repeat pre-
sentations of each item. Overall, the initial response times to first
presentations were significantly shorter than responses to repeated
items (Onset time: p b 0.05, paired t test) and had longer Durations
(p b 0.05). The latency of the peak response was also significantly
faster for first presentations than repeats (Time to Peak: p b 0.05, t test).

4. Analysis of repetition effects at other frequencies

We tested for RS at other frequencies in addition to the high-gamma
band (van Gerven et al., in press). As for high gamma, for each other fre-
quency band we identified the electrodes that exhibited stimulus-related
ECoG activity.We then used the same ANOVA framework to test for RS at
the population level by testing for a interaction between factors Repetition
and Rank at each band. Besides high-gamma, the only band where
significant RS appeared was the 4–8-Hz theta frequency range
(p = 0.001; all other bands: p's N 0.5). However, when we analyzed
each electrode individually, we found that theta stimulus-related RS
was less robust compared with the high-gamma band. Only 3 electrodes
exhibited theta RS total, which is significantly less than the 17 that
exhibited high-gamma RS (p b 0.002, χ2 test).

We also tested for broader patterns of RS beyond the electrodes
that exhibited stimulus-related activity. This approach is common in
fMRI and EEG studies, where individual stimulus representations
are not generally observed (Grill-Spector et al., 2006). We identified
all electrodes that exhibited increased high-gamma activity during
stimulus viewing. Then we performed an ANOVA at each frequency
band to identify significant repetition-related changes in ECoG ampli-
tude. This analysis did not reveal significant RS at any band (all p's
N 0.9 for factor Repetition, uncorrected). In addition to this population
analysis, we tested for RS at the level of individual electrodes, by com-
paring the counts of electrodes at each band that exhibited RS com-
pared with enhancement. This electrode-count analysis also did not
identify significant RS at any frequency (p's N 0.1, uncorrected binomial
tests).
iminished high-gamma electrocorticographic responses, NeuroImage
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In addition to measuring the amplitude of ECoG signals, a different
literature has probed human brain signals by assessing event-related
potentials (ERPs), which are the subsets of brain signals that are
phase-locked to external events (Yeung et al., 2004). We computed
ERPs following the onset of each stimulus and compared these ERPs
between the viewing of novel and repeated items.

Many individual electrodes exhibited significant ERP changes for
viewing repeat items. Fig. 4A shows one electrode that exhibits this
effect, by displaying a larger negative ERP fluctuation at ~200 s for
repetitions compared with viewing novel items. A similar pattern
was also evident across the population of electrodes (Fig. 4B), whereby
many individual electrodes had significantly more negative voltage for
viewing repetitions compared with novel items. Together these findings
are consistent with prior work suggesting increased phase synchrony
for repetitions (Gotts et al., 2012), as phase synchrony often manifests
as ERP fluctuations (Yeung et al., 2004).
Please cite this article as: Merzagora, A.R., et al., Repeated stimuli elicit d
(2013), http://dx.doi.org/10.1016/j.neuroimage.2013.07.006
6. Discussion

We conducted a large-scale analysis of RS using human ECoG data
and identified novel neural changes related to viewing repeated stim-
uli, including stimulus specificity and timing changes. Seventeen
ECoG electrodes (out of 50) exhibited high-gamma RS. Only one elec-
trode showed enhancement (p b 0.001, binomial test). This pattern is
generally consistent with the findings from previous studies that
reliably demonstrate suppressed neural activity with repeated activa-
tions via fMRI and other techniques (Buckner et al., 1998; Dale et al.,
2000; Grill-Spector and Malach, 2001; Henson et al., 2000b; Hermes
et al., 2012; Miller and Desimone, 1994; Puce et al., 1999; Sambeth
et al., 2004; Swick and Knight, 1997; Wiggs and Martin, 1998). Al-
though these studies used a variety of experimental paradigms and
their methodological details differ greatly, the consistent pattern of
RS is one that we replicate.

ECoG data measure human brain activity with a higher spatial and
temporal resolution than other human neuroimaging techniques. Here,
iminished high-gamma electrocorticographic responses, NeuroImage
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Table 1t1:1

t1:2 Summary dataset and high-gamma ECoG repetition effects. Each row describes for one patient, indicating the testing location (TJ, Thomas Jefferson University Hospital, Philadelphia, USA; UP, University of Pennsylvania Hospital, Philadelphia,
t1:3 USA), handedness, and the counts of electrodes with letter-specific activity, repetition-related suppression and enhancement. Electrode counts are reported overall, as well as separately for temporal and occipital cortices.

t1:4 Temporal Occipital Overall

t1:5 Patient # Location Handedness Total Letter-specific Repetition
suppression

Repetition
enhancement

Total Letter-specific Repetition suppression Repetition
enhancement

Total Letter-specific Repetition
suppression

Repetition
enhancement

t1:6 1 TJ R 40 0 0 0 2 0 0 0 78 0 0 0
t1:7 2 TJ R 11 0 0 0 0 0 0 0 63 0 0 0
t1:8 3 TJ R 43 0 0 0 4 0 0 0 160 0 0 0
t1:9 4 TJ R 57 1 0 0 6 6 3 0 98 7 3 0
t1:10 5 TJ R 60 0 0 0 6 4 0 0 90 4 0 0
t1:11 6 TJ R 44 0 0 0 1 0 0 0 90 2 0 0
t1:12 7 TJ R 39 0 0 0 2 0 0 0 106 0 0 0
t1:13 8 TJ R 1 0 0 0 0 0 0 0 138 0 0 0
t1:14 9 TJ R 38 0 0 0 0 0 0 0 62 1 0 0
t1:15 10 TJ R 43 1 0 0 0 0 0 0 120 1 0 0
t1:16 11 TJ R 67 2 2 0 15 6 2 0 110 8 4 0
t1:17 12 TJ R 29 0 0 0 4 3 0 0 96 3 0 0
t1:18 13 TJ R 53 1 0 0 8 1 0 0 99 2 0 0
t1:19 14 TJ R 20 0 0 0 14 6 1 1 48 6 1 1
t1:20 15 TJ R 57 2 1 0 12 3 3 0 96 5 4 0
t1:21 16 TJ R 43 0 0 0 7 1 0 0 72 1 0 0
t1:22 17 TJ R 54 0 0 0 14 6 2 0 150 8 3 0
t1:23 18 UP R 42 0 0 0 2 2 2 0 80 2 2 0
t1:24 19 UP L 12 0 0 0 0 0 0 0 86 0 0 0
t1:25 20 UP R 30 0 0 0 0 0 0 0 78 0 0 0
t1:26 21 UP R 28 0 0 0 5 0 0 0 36 0 0 0
t1:27 22 UP L 28 0 0 0 2 0 0 0 86 0 0 0
t1:28 23 UP L 10 0 0 0 0 0 0 0 74 0 0 0
t1:29 24 UP R 35 0 0 0 0 0 0 0 78 0 0 0
t1:30 25 UP R 25 0 0 0 0 0 0 0 68 0 0 0
t1:31 All patients 909 7 3 0 104 38 13 1 2262 50 17 1
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Fig. 4. Event-related potential (ERP) analysis of repetition suppression. A. Example
electrode showing a large negative ERP component after stimulus onset. This component
was significantly larger for viewing repeated items. B. Population analysis of repetition-relat-
ed changes in ERPs. Plot indicates the percentage of electrodes that exhibited significant dif-
ferences in ERPs between the initial viewing of stimuli compared with repetitions. Blue line
indicates electrodes with more positive voltage for initial viewings, Green indicates
electrodes with more positive voltage for repetitions. Red dashed line indicates the
chance level of significant RS patterns.
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Fig. 3. Representation of our analyses examining repetition-related changes in the
shape of the high-gamma responses to initial and repeat stimulus presentations.
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we found that RS was most apparent in the high-gamma band of these
signals. Previous research showed that ECoG high-gamma activity is
caused by a broadband signal (Miller et al., 2007) that correlates with
neuronal spiking (Manning et al., 2009; Miller et al., 2009). This
link between high-gamma activity and neuronal spiking, in conjunc-
tion with our finding of high-gamma RS, suggests that RS manifests
neurally as decreased neuronal activity. By showing that RS also ap-
pears with high-gamma ECoG, it strengthens the evidence that fMRI
can be used to noninvasively estimate neuronal activity and is informa-
tive for understanding the complex interrelation between spiking, the
fMRI BOLD signal, and oscillatory activity (Ekstrom, 2010; Logothetis
et al., 2001). However, to the extent that high-gamma ECoG activity
may additionally relate to neuronal synchrony (Ray et al., 2008), an
important area of future work is to assess repetition-related changes
in synchronous spike timing.

The most novel feature of our study was that we were able to
separately measure RS for the neural representations of individual
stimuli.Many prior studies of RS aggregated across large cortical regions
that showed category-level neuronal responses. This category-wide ap-
proach is logical in fMRI and scalp EEG data where large-scale category
responses are the dominant cognitive pattern. The spatial blurring in-
herent in noninvasive brain data largely precludes differentiating be-
tween local neuronal populations. Here we were motivated by our
prior finding that ECoG signals reveal stimulus-related neural patterns
(Jacobs and Kahana, 2009) and this allowed us to study human RS for
individual exemplars within a category. This stimulus-based approach
was vital for our finding that RS is largest for the stimuli that caused
the largest activations at each electrode.

Although RS is most often observed with noninvasive brain mea-
surements, researchers continue to discuss the implications of these
measurements for the firing of individual neurons (for reviews, see
Grill-Spector et al., 2006; Gotts et al., 2012). We did not directly record
individual action potentials, but our ECoG findings nonetheless shed
some light on these issues. We observed repetition-related decreases
in the duration of high-gamma ECoG responses (Fig. 3). This duration
change is consistent with one prediction of the Facilitation model of
RS (Grill-Spector et al., 2006; Henson and Rugg, 2003; James and
Gauthier, 2006; Sobotka and Ringo, 1996) which proposed that repeti-
tion caused a decrease in the latency or duration of the neural response.
We also observed a significantly later onset time for repeats compared
with novel stimuli, which appears to contradict a different prediction
of the facilitation model. The Facilitation model was created to explain
perceptual-priming data, which is very different from our memory
task. However, this onset time difference is nonetheless very relevant
Please cite this article as: Merzagora, A.R., et al., Repeated stimuli elicit d
(2013), http://dx.doi.org/10.1016/j.neuroimage.2013.07.006
for its predictions because the effect happens at such an early latency
that is unlikely to be caused by top-down memory processes.

A recent model proposed that the RS observed with fMRI is
fundamentally caused by increased low-frequency oscillatory synchroni-
zation for repeat items (Gotts et al., 2012). This theory suggests that
low-frequency activity improves neuronal efficiency by enhancing
the precision of spike timing, thus reducing the total number of ac-
tion potentials required to perform the task. We tested for changes
in low-frequency amplitude for repeated items, but did not observe
repetition-related enhancement, both across the entire population of
electrodes and for the subset of electrodes that exhibited stimulus-
related activity. However, we did identify significant changes in evoked
ECoG signals for repetitions, consistent with prior work (Anderson et
al., 2008; Gilbert et al., 2010). Evoked ERP patterns can result from either
amplitude or phase changes (Fell et al., 2004; Hanslmayr et al., 2007;
Yeung et al., 2004). Thus, together these findings generally support the
view that there is increased phase synchrony for repetitions but no
low-frequency amplitude changes (Gotts et al., 2012).
iminished high-gamma electrocorticographic responses, NeuroImage
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Across the brain, the overall prevalence of RS in our study is lower
than that found in some prior fMRI studies. This may be a result of the
letter stimuli we used. Stimulus-related ECoG activity for letters is
most often observed in visual regions and the patients in our study
had electrodes placed in these areas fairly infrequently (Jacobs and
Kahana, 2009). Because our analysis of RS is predicated on first ob-
serving stimulus-related activity at a particular site, it is likely that a
future study could identify a greater prevalence of RS in ECoG signals
by using a more diverse stimulus set and having more comprehensive
electrode coverage. It is also possible that the prevalence of RS we ob-
served was impacted by the fact that our dataset only included a sin-
gle stimulus category (letters), and, thus, we could only characterize
stimulus-level RS, as in primate single-neuron recordings (Miller
and Desimone, 1994), rather than also measuring RS at the category
level.

The phenomenon of RS has become a core neuroimaging method
that is used in many studies to compare the nature of neuronal repre-
sentations and computational schemes across widespread brain areas
and behaviors. The vast majority of these studies are conducted with
fMRI. Our findings help provide an electrophysiological basis for RS by
showing that this activity is prominent in the high-gamma band of
ECoG and is thus likely correlated with mean neuronal spiking rates
(Manning et al., 2009). An important task going forward is to test
for electrophysiological differences in RS across stimuli, brain areas,
and tasks, as the detailed properties of RS are likely to vary as a func-
tion of the type of item being viewed and how it is processed behav-
iorally (Epstein et al., 2008; Henson et al., 2000a). Our observation
that RS is largest for stimuli that elicit the largest neuronal activations
has implications for our fundamental understanding of the neural
basis of memory by suggesting that individual cortical sites participate
in representing only a subset of stimuli. This implies that we are likely
to create increasingly detailed insights into the neural basis of human
memory with high-resolution recording methods that can measure
precise stimulus-related neural patterns, such as high-field fMRI
(Yacoub et al., 2008), fMRI with custom pulse sequences or coils
(Grill-Spector et al., 2006), and direct brain recordings like ECoG or
single-neuron recordings (Engel et al., 2005; Jacobs and Kahana,
2010).
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