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REVIEW

Current strategies for integrative cartilage repair
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Orthopaedic Surgery & Department of Clinical Research, Center of Regenerative Medicine for Skeletal Tissues, University of Bern, Bern,
Switzerland; dDepartment of Orthopaedic Surgery, Langone Medical Center, New York University, New York, NY, USA

ABSTRACT
Osteoarthritis (OA) is a degenerative joint condition characterized by painful cartilage lesions that impair
joint mobility. Current treatments such as lavage, microfracture, and osteochondral implantation fail to
integrate newly formed tissue with host tissues and establish a stable transition to subchondral bone.
Similarly, tissue-engineered grafts that facilitate cartilage and bone regeneration are challenged by how
to integrate the graft seamlessly with surrounding host cartilage and/or bone. This review centers on
current approaches to promote cartilage graft integration. It begins with an overview of articular
cartilage structure and function, as well as degenerative changes to this relationship attributed to
aging, disease, and trauma. A discussion of the current progress in integrative cartilage repair follows,
focusing on graft or scaffold design strategies targeting cartilage–cartilage and/or cartilage–bone
integration. It is emphasized that integrative repair is required to ensure long-term success of the
cartilage graft and preserve the integrity of the newly engineered articular cartilage. Studies involving
the use of enzymes, choice of cell source, biomaterial selection, growth factor incorporation, and
stratified versus gradient scaffolds are therefore highlighted. Moreover, models that accurately evaluate
the ability of cartilage grafts to enhance tissue integrity and prevent ectopic calcification are also
discussed. A summary and future directions section concludes the review.
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Introduction

Articular cartilage is an avascular, aneural tissue that lines
the surfaces ofmusculoskeletal joints, enabling load bearing
and nearly frictionless joint articulation. Cartilage degen-
eration, which causes pain and loss of joint mobility, occurs
in osteoarthritis (OA), a condition with tremendous social
and economic burden (1). Given its relative isolation from
the blood supply, cartilage has a limited capacity for self-
repair; thus, surgical intervention is often required to ease
OA-associated pain and disability. Existing techniques for
cartilage repair, such as microfracture and osteochondral
transplantation, do not result in consistent cartilage regen-
eration or restoration of tissue continuity and integrity with
the host cartilage or bone. For over two decades, tissue
engineering strategies have been tested and optimized for
cartilage repair (2–13), leading to the development of many
promising cartilage grafts and sophisticated bioreactor sys-
tems for ex vivo graft culture (14–19). To facilitate clinical
translation, the next challenge resides in the restoration of
graft-to-host tissue continuity via functional integration of
the graft or newly formed cartilage with both the host
cartilage and subchondral bone. Therefore, the objective
of this review is to highlight research efforts in cartilage–

cartilage and cartilage–bone integration, focusing on the
role of graft or scaffold design parameters including strate-
gies for employing relevant growth factors for cartilage–
host integration. This manuscript begins with a summary
of the structure and function of healthy cartilage and dis-
ruptions of this relationship by degenerative changes that
occur with age, disease, and trauma. Next, tissue engineer-
ing-based approaches for cartilage regeneration are dis-
cussed in the broader context of integrative cartilage
repair with a focus on strategies that specifically aim to
improve integration of cartilage grafts with native cartilage
and bone. To this end, studies focused on exploring design
parameters such as scaffoldmaterial, growth factor use, and
cell source will be highlighted. This review concludes with
promising future directions and a discussion of potential
challenges in realizing the goal of integrative and functional
cartilage repair.

Healthy articular cartilage structure and
function

Healthy articular cartilage is composed of a mixture of
liquid and solid phases that together enable load
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bearing and joint articulation (20). The extracellular
matrix, actively maintained by resident chondrocytes,
is dense in collagen II and proteoglycans, including
aggrecan as well as dermatan sulfate and keratin sulfate
proteoglycans (21,22), with smaller amounts of collagen
III, VI, IX, X, and XI also present (23–26). The charged
proteoglycans attract water that swells the tissue, allow-
ing it to support compressive loads, while the tensile
properties of the collagen network contribute swelling
resistance and shear strength (20,27–31). In addition,
interstitial fluid pressurization, combined with mole-
cules released from the cartilage surface and synovium,
lubricates the joint surfaces to facilitate painless
motion (32).

Articular cartilage is organized into non-mineralized
and mineralized layers. The non- mineralized layer has
three structurally contiguous zones, each differing in
matrix composition, organization, and chondrocyte
phenotype (33–35). These changes in matrix composi-
tion throughout the zones of articular cartilage are
summarized in Figure 1. Briefly, the surface zone,
located at the articulating region of the cartilage,
accounts for approximately 10% of the height of the
total tissue and consists of thin, elliptical chondrocytes,
and progenitor cells that are surrounded by a matrix
with high water content (~78%), low proteoglycan con-
tent relative to the other zones, and collagen fibrils (4–
12 nm) that are oriented parallel to the surface (36–44).
The cells in this zone produce superficial zone protein
which contributes to joint lubrication (45,46). Below
the surface, the next 60% of the cartilage depth is the
middle zone, within which spherical chondrocytes

reside in a matrix rich in proteoglycans and unaligned
collagen fibers (9–60 nm) (39,41–43,47). The deep
zone, directly below the middle zone, comprises
approximately 30% of the cartilage depth and is marked
by spherical chondrocytes oriented in stacks that are
perpendicular to the articular surface. These cells, while
sparsely distributed, maintain a matrix of relatively
high glycosaminoglycan content, low water content
(~68%), and radially oriented collagen fibrils (60–140
nm) (37,40,42–44,47). Although the collagen fibril dia-
meter generally increases from the surface zone to the
deep zone, fine fibrils (<100 Å) have been noted
throughout the depth of the cartilage in human speci-
mens (40–42).

Situated between the deep zone and the subchondral
bone is the calcified cartilage, comprised of hyper-
trophic chondrocytes embedded in a mineralized
matrix that is rich in collagen II and proteoglycans.
This osteochondral interface is reported to range from
20 to 243 µm in thickness in humans, with the wide
range of values attributed to variability with age and
total cartilage thickness (35,48,49). Using scanning and
transmission electron microscopy (SEM and TEM,
respectively), Bullough et al. directly imaged the calci-
fication front of adult canine cartilage harvested from
the tibial plateau after removing the organic matrix
either chemically or via exposure to high temperatures.
Although the calcified cartilage is tightly interlocked
with the underlying subchondral bone, a distinct bor-
der between the two tissues that is actively regulated by
chondrocytes was observed (50). While the subchon-
dral bone is highly vascularized, the calcified cartilage is

Figure 1. Spatial change in matrix composition across the cartilage–bone junction. Progressing from surface zone cartilage (SZC),
middle zone cartilage (MZC), to deep zone cartilage (DZC), then calcified cartilage (CC) and finally bone, Fourier transform infrared
spectroscopy imaging analysis reveals regional differences in collagen (left), proteoglycan (middle), and mineral (right) distribution
(neonatal bovine tibiofemoral joint). The white line in each image represents the average change in peak area across the specimen
from the surface zone to bone. [Image modified from (61).]
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not. Electron micrographs of mature human, lapine,
and canine cartilage-bone junctions reveal that most
blood vessels terminate at the interface (51).

The calcified cartilage matrix consists primarily of
proteoglycans, mineral, and collagen II, IX, and X
(23,52–54). Highly aligned collagen II fibers run con-
tinuously from the deep zone into the calcified cartilage
layer (55–57). The alignment of the collagen bundles at
this transition and the interdigitated nature of the cal-
cified cartilage–bone junction together serve to anchor
the non-calcified cartilage to the bone (56,58). In a
study by Redler et al., 30 human osteochondral speci-
mens were examined using SEM, and the authors pro-
posed that the undulating junction provides an ideal
geometric configuration to resist the shearing action of
articulation (58). Furthermore, the network of branch-
ing collagen fibrils at the interface also contributes to
the load bearing capabilities of the joint by diffusing
and distributing load during force transmission from
the cartilage to bone, reducing stress concentrations at
the interface (56,58).

In addition to anchoring cartilage to bone, collagen
fibers also serve as a template for mineralization
(50,59). In a study, that characterized the mineral in
human bone and calcified cartilage, Zizak et al. noted a
striking change in the mineral particle orientation from
perpendicular to the surface in the calcified cartilage to
parallel to the surface in the bone, reflecting the under-
lying collagen alignment (60). While the collagen fibers
run continuously from the calcified cartilage to the
deep zone, the mineral is localized to the calcified
cartilage and bone regions (see Figure 1). An exponen-
tial increase in mineral content within the calcified
cartilage region has been reported, and this trend per-
sists with age (61). This mineralized collagen and pro-
teoglycan network collectively impart strength to the
calcified cartilage matrix. Using a three-point bending
test, bovine calcified cartilage modulus was measured to
be approximately 0.32 ± 0.25 GPa, which is intermedi-
ate between that of uncalcified cartilage above and bone
below (62). A modulus ranging from 10 to 30 GPa
(63,64) has been reported for nanoindentation mea-
surements of human femoral calcified cartilage.
Moreover, a direct positive correlation between miner-
alization and indentation modulus was demonstrated in
adult human femoral calcified cartilage (64).

The mineral found in the calcified cartilage has
been identified to be poorly crystalline carbonated
hydroxyapatite that is similar to bone mineral in
terms of both chemistry and size (2–4.2 nm)
(53,55,60,65). It is reported that calcified cartilage
measures a higher calcium content than bone,
although values reported for the calcium content of

the interface range from 1 to 28 wt% (60,63). The
dense mineralized matrix acts as a barrier that limits
diffusion and prevents osseous invasion from the
subchondral bone (66). In the calcified cartilage of
mature murine (67) and equine (68) specimens, the
diffusion coefficient of small molecules (~400 Da)
was reported to be 0.26 and 0.9 µm2/s, respectively.
In the equine model, the diffusion coefficient in the
calcified cartilage was fivefold lower than in the
uncalcified region, highlighting the barrier effect of
the calcified cartilage layer. However, Fluorescence
Loss Induced Photobleaching (FLIP) analysis revealed
that patches of non-mineralized regions, which
account for 22% of the volume of calcified cartilage
in the murine model, may serve as transport path-
ways for small molecules. This finding suggests that,
in addition to its integrative and mechanical func-
tions, the calcified cartilage plays a complex multi-
faceted role in modulating molecular transfer between
the bone and articular cartilage (67).

Age- and disease-related changes

Structural and functional changes in cartilage with age
are well established and have recently been reviewed in
detail (69); a brief summary is provided here.
Hallmarks of the normal aging process in human car-
tilage include decreased thickness and cellularity (70) as
well as accumulation of advanced glycation end-pro-
ducts that alter collagen crosslinking, disrupting matrix
integrity (71). The earliest changes are observed in the
superficial zone, with a 50% decrease in chondrocyte
density reported between 20 and 90 years of age. As cell
density declines, it is likely that any intrinsic repair
potential is diminished, leading to an increased risk of
fibrillation and osteoarthritis (70).

Changes are also observed in the calcified cartilage
with age. The thickness of human calcified cartilage
decreases with maturity (48), and the interface becomes
less permeable as it transitions to serve as a barrier to
solute diffusion from the bone in adult years (72). A
steady reduction in the number of blood vessels is also
observed with age in human femoral and humoral
heads. This decline continues into the seventh decade
of life, at which point the trend reverses to increased
vascularization (73). Parallel trends in remodeling have
been reported, suggesting that the presence of blood
vessels may be correlated to an active remodeling
state (73).

Accumulation of these age-related changes can lead
to OA, which results from the disruption between the
inherent homeostasis between anabolic and catabolic
processes and leads to fibrillation of the articulating
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surface, osteophyte formation, and subchondral bone
thickening (47,74–76). This process may be initiated
gradually by wear that occurs during aging or rapidly
due to trauma, such as a ligamental or meniscal injury
(77). While the specific factors that initiate joint degen-
eration are unknown, Bullough noted that age-related
degeneration first occurs in areas of unloaded cartilage
(78). From this observation, he proposed that, as the
joint remodels with age, areas of cartilage which were
previously unloaded and had thus degenerated are
exposed to new levels of load, leading to overtaxing.
This process results in further degeneration that may
lead to OA (78,79). Conversely, OA may begin with
changes in the subchondral bone, such as cracking, that
result from overloading and occur underneath intact
hyaline cartilage, leading to subchondral bone collapse
and eventual lesion formation in the articular cartilage
(80,81).

Although catabolic processes overtake anabolic
activities, the disease state is accompanied by an
increase in overall chondrocyte activity (82). The net
loss of proteoglycans and the disruption of the collagen
network have been attributed to elevated matrix metal-
loproteinase (MMP) and aggrecanase activity as well as
changes in chondrocyte phenotype, such as collagen III
production (83,84). Shifts in the underlying matrix
architecture consequently result in lower compressive
and tensile mechanical properties (28,85–87), ulti-
mately compromising joint function.

Current progress in integrative cartilage repair

Surgical intervention is often employed to encourage a
healing response in partial thickness defects and restore
a congruent articular surface in symptomatic, focal full
thickness lesions. Clinical treatments that provide
access to the osseous vascular supply include subchon-
dral drilling and microfracture (88–90). For larger
defects, allografts or autografts are transplanted into
the damaged area, a technique termed osteochondral
transplantation (91,92). While these traditional treat-
ments relieve symptoms such as pain, stable integration
of the graft with surrounding bone and cartilage post
repair has yet to be realized.

More recently, cell-based approaches (93) and tis-
sue-engineered constructs have emerged as a promising
alternative to existing treatment options. Several scaf-
fold-based grafts have been approved in Europe, and
many are pending FDA approval in the United States
(94). These early products improve upon traditional
osteochondral transplantation, because they are not
associated with donor site morbidity or the risk of
graft-related disease transmission. Despite their

promise, current grafts have focused primarily on car-
tilage and bone regeneration, and as a result, two chal-
lenges are integration of cartilage grafts with (1)
surrounding articular cartilage and (2) subchondral
bone (see Figure 2). Cartilage–cartilage integration is
critical for stable repair because, in the absence of
continuity between host and neo cartilage, micromo-
tion between the graft and adjacent tissue can fuel
further cartilage degeneration (95). Integration of the
cartilage to bone via the regeneration of the osteochon-
dral interface is also necessary for stable repair because
this calcified cartilage layer contributes to cartilage–
bone homeostasis, mechanical functionality, and long-
term stability. Moreover, during cartilage healing, the
importance of a structural barrier separating bone and
cartilage was demonstrated by Hunziker et al. using a
full-thickness cartilage defect porcine model. It was
observed that a “structural barrier,” in this case a
Gore-Tex® membrane (0.2 µm pore diameter), placed
between the cartilage and bone compartments, was
necessary to maintain the integrity of the newly formed
cartilage. The barrier limited vascular ingrowth from
the subchondral bed into the cartilage compartment
effectively preventing ectopic mineralization in the
newly formed repair tissue (66). Therefore, in order to
achieve functional and integrative cartilage repair, both
cartilage–cartilage and cartilage–bone integration must
be considered in current cartilage graft designs. These
integration strategies are highlighted in the following
sections.

Cartilage–cartilage integration

Cartilage–cartilage integration is necessary for the
success of graft systems in partial- or full-thickness

Figure 2. Challenges in integrative cartilage repair (C = carti-
lage; I = interface).
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defects over time. Clinically, surgical preparation for
cartilage graft placement involves the removal of
damaged cartilage directly surrounding a lesion to
ensure that the graft is well shouldered by healthy
tissue. This process can result in chondrocyte apop-
tosis and necrosis (96), leaving a hypocellular region
surrounding the defect (97). As a result, the integra-
tion of the cartilage graft with host tissue poses a
significant hurdle (98,99). Approaches to overcome
this challenge have largely focused on the use of
chemotactic agents to draw viable cells into the gap
between the graft and native tissue, as well as diges-
tion rinses that break down the dense matrix at the
border of autographs/allografts, facilitating cell migra-
tion to the host-graft junction.

The use of digestion reagents such as hyaluronidase
(100–102), collagenase (100–102), and chondroitinase
ABC (100,103,104) have been investigated. Lee et al.
demonstrated the utility of digestive rinses for improv-
ing cartilage integration by showing that treatment of
cartilage explants with chondroitinase ABC (1 U/ml
for 5 minutes or 0.5 U/ml or 1 U/ml for 15 minutes)
leads to enhanced chondrocyte adhesion, as measured
by a micropipette micromanipulation system (105).
Similarly, treatment with collagenase at 10 U/ml
(102) and 30 U/ml (101) increased cellularity in the
edges of immature (6-month old) bovine full-thickness
explants in vitro. Combined in vitro treatment with
hyaluronidase (0.1%, 24 hours) followed by collage-
nase (10 U/ml or 30 U/ml, 24 hours) eventually
resulted in cellular concentrations in the wound edge
that exceeded that of healthy tissue (102). Adjusting
the doses and treating with the two enzymes simulta-
neously (300 U/ml collagenase with 3% hyaluronidase
for 1 hour) improved cartilage–cartilage integration,
which was demonstrated histologically, between
bovine explants that were cultured subcutaneously in
athymic rats for 35 days (102). The biosafety of these
treatments has been investigated by Quinn and
Hunziker (103) with regard to changes in cell density,
structure, and cell-mediated matrix deposition that
result from choindroitinase ABC treatment (1 U/ml
for 5 minutes). While chondroitinase ABC exposure
did appear to further decrease cell densities within 100
µm of the defect surfaces, the decrease was small
relative to the effect of the defect itself and was con-
tained to the area immediately adjacent to the defect
(within 100 µm), demonstrating that digestive treat-
ments can be spatially controlled to break down
matrix within the zone of chondrocyte death.

Given the low cell density naturally surrounding
defects and the further reduction in cell number imme-
diately following digestive rinses, methods which

actively recruit cells into the edge of the graft are an
attractive option to counteract these trends and draw
viable cells to the wound edge. Chemotactic agents that
have been explored for this purpose include platelet
derived growth factor (PDGF) (106,107), insulin-like
growth factor I (IGF-1) (106–108), basic fibroblast
growth factor (bFGF) (106,107), vascular endothelial
growth factor (VEGF) (107), and a variety of bone
morphogenic proteins (BMPs) (107). Cell migration
analysis via boyden chamber assays indicate that
PDGF, IGF-1, and BFGF effectively stimulate the
migration of bovine articular chondrocytes at 25, 50,
and 100 ng/ml, but are ineffective at lower doses, such
as 5 ng/ml (106). A combination of matrix digestion
and chemotactic stimulation was evaluated by
McGregor et al. using bovine metacarpal-phalangeal
joint cartilage explants, in which the zone of death
resulting from OATS™ harvesting tools was approxi-
mately 173 μm. Several growth factors alone and in
combination with a collagenase rinse led to an
improvement in the repopulation of the zone of
death. Combined treatment with collagenase (0.6%, 10
mins) and 25 ng/ml IGF-1 resulted in the greatest
reduction in the depth of the death zone (~70% of the
untreated control) and increased cellularity within this
region (~4.5 times higher than the untreated control) at
four weeks (106).

Biomaterial-based approaches to promote cartilage–
cartilage integration have also been explored. Wang et al.
designed a tissue “glue” by functionalizing chondroitin
sulfate with methacrylate and aldehyde groups that form
chemical bonds with both the native tissue and an acry-
late-based scaffold (109). This glue was tested in vitro via
application to a cartilage explant and in vivo using a
subcutaneous mouse model. The glue results in stable
integration between the cartilage and a poly (ethylene
glycol) diacrylate hydrogel construct, exhibiting an inte-
gration strength that exceeds the bulk strength of the
hydrogel when measured using a custom shear testing
device. Maher et al. (110) tested the hypothesis that the
introduction of a biodegradable, chondrocyte-laden
nanofibrous hydrogel (PuraMatrix™) in the gap between
the native and grafted cartilage, would improve the
mechanical stability of the interface. When the scaffold
system was seeded with bovine chondrocytes, supple-
mented with transforming growth factor-β3, and tested
in an in vitro bovine cartilage gap model, matrix elabora-
tion was enhanced, resulting in a significant increase in
maximum push-out strength after six weeks.

Overall, these studies highlight the promise of strategies
that improve cell migration and graft integration at the
cartilage–cartilage interface. Initial studies with digestion
rinses, chemotactic agents, and material-based approaches
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have shown potential to support stable, integrative carti-
lage repair. Given the complexity of the events immedi-
ately following postsurgical intervention, it is likely that an
optimized combination of these approaches will be needed
to maximize cartilage–cartilage integration over time.

Cartilage–bone integration

In addition to cartilage–cartilage integration, regenera-
tion of the calcified cartilage region is critical for stable
and functional integration with the subchondral bone.
Published approaches to regenerate the osteochondral
interface include both cell-based and scaffold-based
strategies. In a series of pioneering studies, Kandel
et al. seeded interface-relevant deep zone chondrocytes
(DZCs) on Millicell CM® filter inserts pre-coated with
collagen II, and subsequently cultured them in miner-
alization media containing 10 mM beta-glyceropho-
sphate (111). Mineralized cartilage formation was
observed in the region directly adjacent to the insert.
Scaling up to an in vivo sheep model, biphasic con-
structs were formed by seeding ovine full-thickness
chondrocytes atop calcium polyphosphate substrates.
The full-thickness chondrocytes formed an unminera-
lized cartilage layer on top of the bone scaffold, while
calcified cartilage was not observed. The lack of a
calcified cartilage layer likely contributed to the
decrease in interfacial shear strength between the
bone and cartilage that was measured. The cartilage
tissue was sheared off in some of the defects under-
scoring the importance of the calcified cartilage layer in
functional cartilage–bone integration (112). This find-
ing was later confirmed by Allan et al. in a study in
which DZCs were seeded directly above a calcium
phosphate-coated calcium polyphosphate scaffold in
mineralization media, establishing a calcified cartilage-
like zone above the ceramic (113). The mineral formed
in vitro was shown to be biomimetic, with enhanced
interfacial mechanical properties compared to con-
structs that lacked a mineralized cartilage zone (114).
These studies demonstrated the feasibility and impor-
tance of calcified cartilage formation, and the next step
is to address the functional requirements of the carti-
lage–bone interface through scaffold design.

Stratified scaffolds for cartilage–bone
integration

An alternative approach to cell layers seeded atop a
bone scaffold is a multi-phased graft that guides the
simultaneous regeneration of bone, cartilage, and a
calcified cartilage intermediate. A scaffold-based
approach is advantageous because fewer chondrocytes

are required than the cell-based approach, and func-
tional mechanical properties of each tissue type can be
readily achieved through scaffold design. First genera-
tion stratified scaffolds contained distinct cartilage and
bone regions joined together using either sutures or
sealants. For example, Schaefer et al. seeded bovine
full-thickness chondrocytes on polyglycolic acid
(PGA) meshes and periosteal cells on polylactide-co-
glycolide (PLGA)/polyethylene glycol foams. The two
constructs were subsequently sutured together at either
one or four weeks post-seeding. Integration was
enhanced when the constructs were joined together
after one week compared to four weeks, illustrating
the importance of early cell-cell interactions during
tissue integration (9). This general approach has since
been tested using a variety of biomaterials and scaffolds
(3,115–127) and growth factors (128–131). Collectively,
these studies demonstrate the feasibility of engineering
both cartilage- and bone-like tissues and underscore the
need for a consistent biological barrier between neo-
cartilage and the bone region. It is likely that the
biphasic design alone is not sufficient to achieve con-
sistent and functional cartilage and bone formation and
integration.

Recently, tri-layered scaffolds with cartilage, interface,
and bone regions have been designed for osteochondral
regeneration. Heymer et al. tested a tri-layered scaffold
produced by Kensey Nash Corporation. The scaffold con-
sists of a hydrophobic interface that separates the cartilage
and bone portions that are comprised of collagen I fibers
with incorporated hyaluronan or polylactic acid, respec-
tively (132). When stem cells were seeded on the poly-
lactic acid portion above the interface and cultured for
three weeks in vitro, cartilage-like tissue was formed.
While calcified cartilage formation was not observed,
the three layers remained distinguishable and structurally
stable after culture. Jiang et al. reported on a scaffold
composed of an agarose hydrogel and PLGA/45S5 bioac-
tive glass composite microspheres, which supported the
region-specific coculture of chondrocytes and osteoblasts.
This design led to the production of three compositionally
distinct yet structurally continuous regions containing
cartilage, calcified cartilage, and bone-like matrices in
vitro (133). Similarly, Kon et al. developed an acellular
tri-layered osteochondral scaffold that controls the spatial
distribution of calcium phosphate and collagen to recapi-
tulate the cartilage-to-bone transition. The upper, inter-
mediate, and lower layers consisted of 100% collagen I,
60% collagen I and 40% HA, and 30% collagen I and 70%
HA, respectively (134). The layers were joined via freeze
drying and tested in an adult equine osteochondral defect
model. Distinct unmineralized and mineralized regions
were present after six months of implantation, and the
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new tissue was well integrated with surrounding cartilage
and bone. Recently, this scaffold was tested in a pilot
clinical trial of 30 patients in which safety and potential
clinical benefit, measured by patient reports on the
Cartilage Standard Evaluation Form, were demonstrated
after a two-year follow-up (135). Marquass et al. intro-
duced a tri-phasic scaffold consisting of a collagen I
hydrogel to mimic cartilage and a layer of bioactive cera-
mic TCP to simulate bone that were joined together by an
intermediate activated plasma phase. When seeded with
autologous MSCs, the tri-layered scaffold performed
comparably to osteochondral autografts both histologi-
cally and mechanically after one year in an ovine model
(136). In a study by Cheng et al., MSCs encapsulated in
collagen microspheres were pre-differentiated into chon-
drocytes or osteoblasts using a novel collagen microen-
capsulation technology (137). Themicrospheres were first
aggregated in a collagen I gel to form chondrogenic and
osteogenic layers that were then combined to produce an
osteochondral scaffold. Additionally, a middle layer of
undifferentiated MSCs in collagen I gel was sandwiched
between the osteogenic and chondrogenic regions.
Formation of a calcified cartilage interface layer was pre-
sent only in the group with all three layers, while no
interface was observed when undifferentiated MSCs
were cultured on bi-layered scaffolds with either chon-
drogenic or osteogenic layers. Collectively, these studies
reveal that tri-layered scaffolds offer direct regional con-
trol; however, in order to be translated, methods are
needed to achieve functional integration of all three layers
and support the robust formation of a physiologically
relevant-sized calcified cartilage interface.

Scaffold designs utilizing a compositional gradient
eliminate the need to integrate distinct layers and cir-
cumvent the challenge of fabricating a physiologically
relevant or very thin calcified cartilage scaffold that
must be pre-integrated with the bone and cartilage
sections. To this end, Sherwood et al. formed an osteo-
chondral graft with graded porosity and composition
between the cartilage and bone regions using the
TheriForm™ three-dimensional printing process (138).
Ovine chondrocytes attached to the cartilage phase of
the scaffold and produced cartilage-like tissue after six
weeks of in vitro culture. Harley et al. reported on a
gradient scaffold using liquid-phase co-synthesis with
an unmineralized collagen II-chondroitin-6-sulfate car-
tilage region and a mineralized collagen I-chondroitin-
6-sulfate bone region (8). At the interface, the solutions
were interdiffused, leading to a gradual transition in
composition between the cartilage and bone regions.
Targeting mechanical properties, Singh et al. developed
a multi-phased PLGA microsphere scaffold with con-
tinuous macroscopic gradients of stiffness using an

ethanol-based solvent evaporation technique.
Structural gradients were produced by varying the spa-
tial distribution of microspheres that were reinforced
with a stiff nano-phase material (CaCO3 or TiO2) and
softer microspheres made of 100% PLGA (139). More
recently, Salerno et al. reported the fabrication of a
PCL-HA osteochondral scaffold using a combination
of CO2 foaming and salt leaching. Concentration gra-
dients of salt particles and foaming temperatures were
manipulated to create gradients in pore size, porosity,
and scaffold morphology (140). Utilizing a novel extru-
sion method, Erisken et al. fabricated PCL nanofiber
scaffolds with graded calcium phosphate content. In
vitro studies showed that culturing MC3T3-E1 cells
on these scaffolds led to a gradient of calcified matrix
within four weeks (141). In a separate study by the
same group, a novel twin-screw extrusion and electro-
spinning method was used to fabricate gradients of
insulin and β-glycerophosphate (β-GP) in a PCL nano-
fiber mesh (142). These scaffolds were then seeded with
human adipose-derived stromal cells, and chondro-
genic differentiation of the stem cells increased at insu-
lin-rich locations while mineralization increased at β-
GP-rich locations.

Gradients of growth factors have also been incorpo-
rated into osteochondral scaffolds. In a study by Dormer
et al., chondrogenic and osteogenic growth factors were
added to PLGA microsphere-based scaffolds in opposing
gradients. This scaffold was seeded with human MSCs,
resulting in a corresponding gradient from cartilage-like
to bone-like matrices (143). While scaffolds with dual
growth factor gradients did not outperform sham repair
in the mandibular model (144), osteochondral regenera-
tion was enhanced in a rabbit knee model when both
growth factor and HA gradients were simultaneously
incorporated into the scaffold design (145). Although
these studies demonstrate the feasibility of forming
unmineralized and mineralized tissues on a continuous
scaffold, the consistent and robust regeneration of a dis-
tinct calcified cartilage layer at the soft-to-hard tissue
junction remains elusive. Furthermore, physiologically
relevant gradient scaffolds are relatively challenging to
fabricate and require methods which enable precise spa-
tial and temporal control, posing a barrier to future scale-
up efforts. More studies are also needed to determine if a
gradient of properties is necessary to recapitulate the
native interface in a scaffold system or if stratified layers
are sufficient.

Calcified cartilage regeneration

To address the challenge of consistently regenerating
calcified cartilage, recent studies have focused on
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identifying design parameters for osteochondral inter-
face formation. Khanarian et al. evaluated and opti-
mized a biomimetic hydrogel-ceramic composite
scaffold for calcified cartilage formation by seeding
the scaffold with bovine deep zone chondrocytes that
were made hypertrophic via thyroid hormone (T3)
stimulation (146). Higher matrix deposition and miner-
alization potential were exhibited by the hypertrophic
cells in the presence of HA particles (147).
Furthermore, while cell hypertrophy was independent
of ceramic size, matrix deposition was significantly
greater with the addition of micron-sized ceramic par-
ticles but not with the addition of nano-sized particles.
The highest matrix content, mechanical properties, and
mineralization potential were found in composite gels
with 3 wt/vol% micro-HA, which approximates the
mineral content of the native osteochondral interface.
Evaluation of a hybrid alginate hydrogel-hydroxyapatite
(HA) scaffold showed that the HA phase of the com-
posite scaffold promoted the formation of a proteogly-
can- and collagen II-rich matrix by DZCs. These cells
became hypertrophic with the addition of T3 in these
gels (146). Importantly, the enhanced biosynthesis
translated into significant increases in both compressive
and shear moduli relative to the ceramic-free control.
Presence of HA, and likely the associated high local
calcium concentration of the alginate matrix, also pro-
moted chondrocyte hypertrophy and collagen X
deposition. These results demonstrate that a hydrogel
with biomimetic ceramic content is optimal for calci-
fied cartilage formation. Clinically, it is possible that the
composite hydrogel scaffold could be used to augment
existing cartilage grafts, providing anchorage to the
bone and a diffusion barrier during the healing process.
For example, in a full-thickness defect, the ceramic
phase would promote osteointegration with bone
while the hydrogel phase would facilitate integration
with other hydrogel-based cartilage grafts.

Summary and future directions

This review highlighted promising cartilage regeneration
strategies with a focus on approaches that target functional
integration between the graft and native cartilage and sub-
chondral bone. Specifically, digestive rinses, chemotactic
factors, and strategically designed biomaterials have been
employed to promote integration of the graft with native
cartilage. Custom scaffolds with graded or continuous
changes in composition have demonstrated promise for
the regeneration of composite tissues of cartilage, calcified
cartilage and bone in vitro and in vivo. The tremendous
potential of these approaches is evident and has been
established both in vitro and in vivo to promote integrative

cartilage repair. An optimized combination of these strate-
gies that promotes simultaneous integration with both host
cartilage and subchondral bone will ensure integrative car-
tilage repair.

In general, published cartilage–cartilage integration
approaches have been confined largely to the investiga-
tion of digestive and chemotactic factors to encourage
repopulation of the hypocellular cartilage–cartilage
junction, although promising results have also been
reported for biomaterial-based approaches. More
research into these strategies is needed to establish the
role of scaffolding systems in expediting the integration
between both native and newly formed cartilage.
Relative to the cartilage–cartilage interface, substan-
tially more effort has been directed toward scaffold
development for the cartilage–bone interface.
However, it is still unclear which scaffold design is
best suited to regenerate the osteochondral interface
and anchor the neo-cartilage to underlying bone. Tri-
layered scaffolds and gradient scaffolds offer tunable
platforms that can be used to direct interface develop-
ment and prevent delamination; however, the scalabil-
ity of these highly controlled and regionally distinct
systems requires further testing to determine their rela-
tive advantage in vivo.

The scarcity of in vitro and in vivo models to test
integrative scaffolds has limited the study of these systems
and contributed to the lack of conclusive data pertaining to
each system. Integration performance cannot be assessed
using traditional in vitro studies because the scaffolds are
cultured in isolation fromnative tissues.Meanwhile, in vivo
studies provide integration data but are extremely expen-
sive to conduct. Moreover, it is unclear if small animal
studies, whilemore cost-effective than large animalmodels,
offer meaningful, translatable data because the cartilage in
these animals is far thinner than that found in humans and
healing potential varies markedly across species. The emer-
gence of organ culture models offers a promising modality
to asses integration in large animal (110,148–150) or
human (151) tissues without the prohibitive cost of a live
animal study. These models are advantageous as they pre-
sent an opportunity to study integration and the impact of
scaffolds on the surrounding native tissue with a higher
level of control experimentally. Characterization, optimiza-
tion, and standardization of these models will be critical in
the next phase of integrative cartilage repair research.

In addition to the development of better culture models,
further investigation is also needed to fully understand
interface maintenance and homeostasis to ensure the
long-term success of integrative regeneration strategies.
Work by Jiang et al. highlighted the importance of chon-
drocyte–osteoblast interactions using a three-dimensional
model in which a micromass of chondrocytes was cultured
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with a monolayer of osteoblasts. Coculture of these cell
types regulated cell-mediated mineralization and matrix
production (152). Later, the importance of the zonal orga-
nization of cartilage as a regulator in chondrocyte biosynth-
esis and mineralization was demonstrated through studies
performed with monolayer cocultures (75). Collectively,
these results emphasize the importance of cellular interac-
tion in the long-term regulation and stability of osteochon-
dral systems.

In summary, custom-designed scaffold systems com-
bined with chemotactic factors, and digestive washes repre-
sent a promising platform for integrative cartilage repair.
However, further exploration into appropriate culture
models with specific emphasis on tissue integrity and the
prevention of ectopic calcification is required to develop a
long-term solution to the treatment of full-thickness carti-
lage defects. It is anticipated that these efforts will lead to
the development of a new generation of clinical manage-
ment strategies for cartilage degeneration that result in
functional and stable cartilage repair with improved long-
term outcomes.
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